

### PERTH MODERN SCHOOL

Exceptional schooling, Exceptional students.

## Test 3

Calculus of Trigonometric Functions Discrete Random Variables Binomial Distributions

Semester One 2018

## Year 12 Mathematics Methods

# Calculator Assumed

| Name: CHENG / Version 2                                                                               | <u>Teacher:</u>                           |
|-------------------------------------------------------------------------------------------------------|-------------------------------------------|
| Date: Wed 2 <sup>nd</sup> May                                                                         | Mr McClelland Mrs. Carter                 |
| You may have a formula sheet for this section of the test.<br>Classpad Calculators<br>1 page of Notes | Mr Gannon  Ms Cheng  Mr Staffe  Mr Strain |
| Total/41 45 minutes +5 minutes READIN                                                                 | IG                                        |
| Question 1                                                                                            | (5 marks)                                 |

The discrete random variable X has the probability distribution shown in the table below.

| x      | 0                | 1                | 2                | 3               |
|--------|------------------|------------------|------------------|-----------------|
| P(X=x) | $\frac{2a^2}{a}$ | $\frac{1-3a}{2}$ | $\frac{1+2a}{2}$ | $\frac{4a^2}{}$ |
|        | 3                | 3                | 3                | 3               |

Determine the value of the constant a.

$$\frac{2a^{2}}{3} + \frac{1-3a}{3} + \frac{1+2a}{3} + \frac{4a^{2}}{3} = 1$$

$$6a^{2} - a - 1 = 0$$

$$(2a - 1)(3a + 1) = 0$$

$$\therefore a = \frac{1}{2} \text{ or } a = -\frac{1}{3}$$

$$\text{Check: } a = \frac{1}{2}, \frac{1-3a}{3} < 0^{\frac{1}{3}}, \text{ reject } a = \frac{1}{2}$$

$$\therefore a = -\frac{1}{3}$$

(8 marks)

Differentiate  $e^{-3x}\sin(2x)$  with respect to x, showing full working.

(2 marks)

$$\frac{d}{dx} e^{-3x}$$
 sin(2x)

$$= -3e^{-3x} \sin 2x + e^{-3x} \cos(2x) \times 2$$

$$= -3e^{-3x} + e^{-3x} \cos(2x) \times 2$$

$$= e^{-3x} \left( -3\sin 2x + 2\cos 2x \right)$$
(b) Hence find the following indefinite integral

Hence find the following indefinite integr

(3 marks)

$$-3\int e^{-3x}\sin(2x)\,dx + 2\int e^{-3x}\cos(2x)\,dx.$$

And using a similar process as part (a), find the indefinite integral for

$$-3\int e^{-3x}\cos(2x)\,dx - 2\int e^{-3x}\sin(2x)\,dx.$$

By (a), 
$$\int -3e^{-3x} \sin 2x + 2e^{-3x} \cos (2x) dx$$
  
=  $e^{-3x} \sin(2x) + C_1$ 

 $\frac{d}{dx} e^{-3\pi i} \cos(2x) = -3 e^{-3\pi i} \cos(2x) - e^{-3\pi i} \cos(2x)$ 

$$= e^{-3x} \cos(2x) + C2. \checkmark$$

 $\int \frac{3(2\cos(2x) + 3\sin(2x))e^{-3x}}{2(3\cos(2x) - 2\sin(2x))e^{-3}}$ 

Interactive, Simplify

(c) Use the two equations from (b) to determine  $\int e^{-3x} \sin(2x) dx$ .

(3 marks)

$$e^{-3x} = -3 \int e^{-3x} \sin(2x) dx + 2 \int e^{-3x} \cos(2x) dx$$

$$e^{-3x} \cos(2x) + C_1 = -3 \int e^{-3x} \cos(2x) dx - 2 \int e^{-3x} \sin(2x) dx$$

$$= -9 \int e^{-3x} \sin(2x) dx + 6 \int e^{-3x} \cos(2x) dx$$
 (3)

$$= -13 \int e^{-3x} \sin(2x) dx$$

:, 
$$\int e^{-3x} \sin(2x) dx = -\frac{1}{13} \int_{3}^{3} e^{-3x} \sin(2x) + 2e^{-3x} \cos(2x) dx$$

If they don't "Use the two equations from (6)

I mark Only

(6 marks)

Differentiate with respect to x, (show full working)

(a) 
$$y = \sin^3(2x+1)$$
.

(3 marks)

$$\frac{dy}{dx} = \frac{3\sin^{2}(2x+1)\cos(2x+1)}{\cos(2x+1)} \times 2$$
=  $6\sin^{2}(2x+1)\cos(2x+1)$ 

Evaluate the following, showing full working.

(b) 
$$\int_{\frac{\pi}{6}}^{\frac{\pi}{2}} cos(2x) dx$$
 (3 marks)
$$= \frac{1}{2} sin(2x) \int_{\frac{\pi}{6}}^{\frac{\pi}{2}} \int \left( find \ auti-derivative \right)$$

(3 marks)

$$=\frac{1}{2}\left(\sin\pi-\sin\frac{\pi}{3}\right)$$

(Evaluate by substitution)

$$=\frac{1}{2}\left(0-\frac{\sqrt{3}}{2}\right)$$

$$=\frac{1}{2}\left(0-\frac{\sqrt{3}}{2}\right)$$

$$=-\frac{\sqrt{3}}{4}$$

( Finel answer)

(9 marks)

75% of the avocados produced by a farm are known to be first grade, the rest being second grade. Trays of 24 avocados are filled at random in a packing shed and sent to market.

Let the random variable X be the number of first grade avocados in a single tray.

Explain why *X* is a discrete random variable, and identify its probability distribution.



X~ B (24, 0.75) which is a binomial distribution

Calculate the mean and standard deviation of X.

$$X = 24 \times 0.75 = 18$$

$$O_{\times} = \sqrt{18 \times 0.25} = \frac{3\sqrt{2}}{2} = 2.12$$

- Determine the probability that a randomly chosen tray contains (c)
  - (i) 18 first grade avocados.

(1 mark)

more than 15 but less than 20 first grade avocados. (ii)

(2 marks)

$$= P(16 \le x \le 19) = 0.6320$$

In a random sample of 1000 trays, how many trays are likely to have fewer first grade than (d) second grade avocados.

second grade avocados.  $P(X \le 11) = 0.0021$ then X must be <12  $0.0021 \times 1000 = 2.1 \approx 2 \text{ trays.}$ 

(4 marks)

Find the area between the two curves from  $0 \le x \le \frac{\pi}{2}$ , showing full algebraic reasoning.



$$\frac{\pi}{6} \int |\cos x - \sin 2x| dx + \int |\sin 2x - \cos x| dx$$

$$= \left[ \sin x + \frac{\cos(2x)}{2} \right]_{0}^{\frac{\pi}{6}} + \left[ -\frac{\cos 2x}{2} - \sin x \right]_{\frac{\pi}{6}}^{\frac{\pi}{2}}$$

$$= \left[ \left( \frac{1}{2} + \frac{1}{4} \right) - \left( 0 + \frac{1}{2} \right) \right] + \left[ \left( \frac{1}{2} - 1 \right) - \left( -\frac{1}{4} - \frac{1}{2} \right) \right]$$

$$\left[\left(\frac{1}{x}-1\right)\right]$$

(9 marks)

A sample of six objects is to be drawn from a large population in which 20% of the objects are defective. Find the probability that the sample contains:

three defectives.

$$P(X=3) = binoming$$

P(X=3) = binomial PDF(3, 6, 0,2) = 0.08192

(ii) fewer than three defectives.

Another large population contains a proportion p of defective items.

(i) Write down an expression in terms of p for P, the probability that a sample of six items contains exactly two defectives. (2 marks)

$$P = 6C_2 p^2 (1-p)^4 = 15 p^2 (1-p)^4 / V$$

(ii) By differentiating to find  $\frac{dP}{dv}$ , show that P is greatest when  $p = \frac{1}{3}$ .

$$\frac{dP}{dp} = 15 \times 2p \times (1-p)^4 + 15p^2 \times 4(1-p)^3 \times (-1)$$

$$= 30p(1-p)^4 - 60p^2(-p)^3$$

$$= 30p (1-p)^{3} ((1-p)-2p)$$

= 30p 
$$(1-p)^3(1-3p)=0$$
  $\frac{d^2p}{dp^2}(1)=0$   $\frac{d^2p}{dp^2}(1)=0$ 

$$P = 0, 1, \frac{1}{3}$$

reject p=0,1 as p is proportion MAX

$$\frac{d^2p}{dp^2}(0) = 30 \text{ the similar}$$

$$\frac{d^2p}{dp^2}(1)=0 \quad \text{? P.O.1.}$$

Page 7 of 7

Pekth Modern School 4 360 p 3 - 180p 2 + 30p

